
Portable hotplugging: NetBSD’s uvm hotplug(9) API development

Santhosh N. Raju
santhosh.raju@gmail.com

Cherry G. Mathew
cherry@NetBSD.org

Abstract
NetBSD has quietly re-engineered its virtual memory
subsystem over the years via uvm(9). uvm(9) is very
portable—to the point where usermode kernels, para-
virtualised kernels and monolithic kernels all share the
same machine independent (MI) VM code. (The notable
exception being rumpkernel(9), which brews its own
stubs).

One sticky point in all these configurations is the
early boot time system memory segment management.
NetBSD, still “managed” this with a static array.

We show how we transformed this static implementa-
tion into a dynamically managed key/value pair system,
almost entirely in userspace, using Test Driven Devel-
opment methodologies on NetBSD’s automated testing
framework.

We further show how this enabled us to measure the
performance of our changes, within the limitations of
NetBSD’s testing framework by integrating load testing
into our userspace development methodology.

1 Introduction

The virtual memory subsystems of many modern server
operating systems have support for hotplugging mem-
ory [6, 16]. This enables one to dynamically add or re-
move memory without the need to power off the system.
While NetBSD’s virtual memory manager uvm(9) [15]
is quite robust and portable, it lacked this ability to hot-
plug memory segments on the fly until recently.

In this paper, we look at the strategies that we used
to implement such a hotplug system in NetBSD via Test
Driven Development [12] (TDD). We explore some of
the challenges as well as implementation details that
eventually led to making uvm hotplug(9) [14] a fea-
ture in NetBSD-CURRENT as of writing this paper.

We also perform a side by side benchmark of the old
API against the new API and show the results.

2 Background

In order to understand how uvm hotplug(9) was im-
plemented, we first need to understand how the current
uvm(9) subsystem is limited in NetBSD.

The current uvm(9) implementation in NetBSD is
unaware of changes to (increase or decrease) physical
memory size. This is due to the way the memory pages
are statically allocated during kernel boot time and a list
of free pages is maintained in a static array along with a
set of properties (tags).

The static array implementation of vm physseg which
gets initialised during boot time is defined as follows in
uvm page.c:

struct vm_physseg vm_physmem[VM_PHYSSEG_MAX];

int vm_nphysseg = 0;

#define vm_nphysmem vm_nphysseg

This implementation prevents any additional run-time
modification either by expanding or collapsing this array.
As we proceed through this paper, we will show how this
naive array implementation was replaced by a more ro-
bust R-B tree implementation via the rbtree(3) [11]
API which would become the basis for implementing the
uvm hotplug(9) feature.

3 Sanitising for uvm hotplug(9)

In this section we describe the strategies we used to sani-
tise the parts of the existing uvm(9) API relevant to “hot-
plug”, so that we could apply TDD methodology to de-
sign and implement the uvm hotplug(9) API.

3.1 The reference
TDD, as the name suggests, is a development methodol-
ogy where test code is written before the actual imple-
mentation of new functionality. Applying this methodol-
ogy to the NetBSD kernel was quite a challenging task.



Most of the code we aspired to work with within uvm(9)

was historically written without unit testing in mind and
no tests had been written to validate the existing imple-
mentation.

We first developed an idealised expected API meant
to represent how the hotplug API should look. We then
wrote the tests for this API, which now acts as the set of
baseline tests which would act as the starting point of the
uvm hotplug(9) development.

Both these tests and the idealised API were buildable
via ATF [1] but was not written so that the build.sh [7]
would build them.

3.2 The separation

Isolating the existing API that deals with segment han-
dling in uvm(9) was essential for the rest of the TDD
methodology to work. We spent quite some time going
through uvm page.c trying to figure out sections of code
that were significant to our work.

After this we separated the relevant functions, struc-
tures, variables, etc. into a header and source file. Now
segregated into uvm physseg.c and uvm physseg.h it
was time to deal with the relevant machine dependent
(MD) parts of the code.

3.3 Exposing the API

Our initial changes to MD mostly focused on amd64 and
i386 since these where the architectures that were readily
available to us. During this process we identified vari-
ous sections of code that were then converted to “utility”
functions and exposed via the uvm physseg.h file.

This was necessary for us to achieve testing code in
isolation, which is quite important when it comes to unit
testing.

To keep a disciplined API, we followed these steps:

• Kept structures that needn’t be exposed globally to
the users in a .c file. This would force future con-
sumers of the API to not make assumptions about
implementation.

• The .h file nicely exposes all the “valid” opera-
tions that can be done on the various opaque struc-
tures that is used in this API. In terms of object ori-
ented concepts these would be “getters” and “set-
ters” along with the functionality the API can pro-
vide.

This refactoring effort resulted in actual buildable and
bootable code for both the architectures that we were
working with.

3.4 Testing in userspace

Once we had proper, buildable code, the next job was to
get the reference tests we had written for our reference
API to work with the actual existing API.

In order to get the kernel code to work in userspace we
did the following:

• Included the .c file as part of the ATF test.

This made the entire API exposed to userland ATF,
and enabled isolated testing of the various functions
exposed in the .h file.

• Stub / re-implemented kernel API calls.

This was important, since many of the included
in uvm physseg.c for example used functions
that were only accessible when running within
the kernel, for example kmem alloc() [5] or
kmem free() and these could not be accessed from
witin userland. One way we implemented this was
to have a separate include that would import these
functions into the MD header file so that they did
not get included in the ATF tests causing build er-
rors. We then re-implemented these functions with
User land wrappers of equivalent semantics. For ex-
ample malloc() or free(). Of course this was
only a workaround, but it did provide sufficient iso-
lation for unit / functional testing.

• Stub / re-implemented dependent API calls.

Similar to above, the file we were including may be
dependent on other APIs that the system uses for
example uvm physseg.c depends on certain calls
from uvm page.c A question we always had to re-
mind ourselves about was, whether to stub them or
re-implement the whole function ? Our take on this
was to stub them with placeholder return values for
dependant tests. A minimalstic re-implementation
was demanded for sometimes, just enough so that
the tests could make progress.

After this we had a set of working tests that could test
the correctness of the current static array implementation
and this would act as our starting point for implementing
the R-B tree based memory segment handling.

4 Design and implementation

Here we have a look at the design considerations for a
dynamic data structure so that we have hotplugging as
a feature in NetBSD current and the implementation de-
tails of this.

2



4.1 From static to dynamic

For a data structure where dynamic insertion and deletion
of segments could be made, we chose to use the R-B tree,
based on the rbtree(3), which comes as a part of the
standard C Library.

Our choice of data structure was influenced by the fol-
lowing:

• We no longer have to worry about maintaining
a sorted order, in-order traversal of the R-B tree
always results in sorted order retrieval. What
makes this easier is the macro provided by the API
RB TREE FOREACH() which goes through each of
the node in sorted order.

• No more multiple strategies for maintaining the seg-
ments. The current one provides 3 separate strate-
gies RANDOM, BSEARCH and CONTIG depend-
ing on how you want to keep the segments. With
the choice of R-B tree implementation, all of the
strategies would boil down to BSEARCH.

• Less code clutter, since we are now dependent on
the R-B tree API to do the inserts / removals / re-
trievals, we do not need to worry about writing code
to maintaining and managing the data structure it-
self, hence making a reliable and robust code base
which is less prone to errors.

• Neat and clean API, compared to queue(3) [9] and
tree(3) [13], the rbtree(3) API is cleaner and
neater to read and to implement.

4.2 Design challenges

The transition was not easy, we did face some issues
while porting. Some changes were made to the existing
system to make the porting easier.

• The current handle for accessing a segment is the
index of the array vm physmem[] which is of type
int. For R-B tree the proposed equivalent handle
would be struct vm physseg *, this also means
“for() loops” that were created for iterating the ar-
ray would be needed to re-written carefully so as
not to break the system.

• In order to ease the transition, we introduced a new
abstraction for the above mentioned handle called
uvm physseg t which will be a typedef over the
existing handle and then introduce enough utility
functions that can help replace the current assumed
properties of the int type which are used in various
sections through UVM.

• Since we are modifying a fundamental part of the
operating system, this implies every single architec-
ture port of NetBSD [8] (which is 78 at the time of
writing this) would have to be touched.

• A question at the back of our minds was if, finally,
with the new code, what the performance implica-
tions would be.

4.3 Implementing the R-B tree
Here we have a quick overview of how the R-B tree based
implementation has affected the API.

• Introduction of uvm physseg t

The new abstraction uvm physseg t now encap-
sulates the handle that is used to access the cur-
rent “segment” or “node”, this concept is also back-
ported into the existing static array implementation,
so that the consumers of the uvm physseg API do
not break.

• Introduction of iterators

With the introduction of a new handle, we cannot
assume we can loop through an array using just in-
tegers like we did in the current code base.

The static array implementation iterating through
the segment looks like this:

for (lcv = 0 ; lcv < vm_nphysmem ; lcv++) {

seg = VM_PHYSMEM_PTR(lcv);

freepages += (seg->end - seg->start);

}

With the R-B tree changes, the above loop looks like
this:

for (bank = uvm_physseg_get_first();

uvm_physseg_valid(bank);

bank = uvm_physseg_get_next(bank)) {

freepages += uvm_physseg_get_end(bank) -

uvm_physseg_get_start(bank);

}

They are more agnostic and do not assume an under-
lying data structure for the “segment”. This means
that all of these changes need to propagate through
the MI and MD Part of the code

• Introduction of uvm physseg valid()

This is a function call that can be used to check the
validity of a given segment. And returns a boolean
depending on the validity of the passed segment.

3



5 Testing uvm physseg via ATF

We had the baseline set of ATF tests written for the orig-
inal static array implementation, since the rbtree(3)

implementation should behave exactly the same as the
static array, we just had to make sure that the tests
which were passing for static should also be passing for
rbtree(3). This provided a rather easy way to test the
correctness of our API even before we started to build
the code base to do an actual test. Overall this did reduce
considerably the amount of time we needed to spend
to make sure the old and the new implementation were
working as expected without the need to worry about the
details.

Despite this there were some interesting edge cases
that came along

5.1 Prototype of uvm page physload()

One such interesting case was the behaviour of
uvm page physload(), this function was originally de-
signed to plug in segments of memory range during boot
time. Hence if any errors happened it would generally
print a message and make the kernel panic. Since this
was the way it was expected to work, it was fine for it
to return nothing (void) after its execution. The original
prototype looked like this

void

uvm_page_physload(paddr_t, paddr_t, paddr_t,

paddr_t, int);

However this was a bit of a hurdle when it came
to writing unit tests. One of the biggest annoyances
was getting a handle to the segment that was plugged
in. Since uvm page physload() would not return any-
thing, the only way to get a reference to the first inserted
segment would be to do a uvm physseg get first().
Most of the initial unit tests written assume that we fetch
the desired handle using uvm physseg get first()

function, but this was only a work around, since this is
not a reliable approach in this methodology.

uvm_physseg_t

uvm_page_physload(paddr_t, paddr_t, paddr_t,

paddr_t, int);

The change helped in removing unwanted assump-
tions in our ATF tests, making for cleaner and compact
test cases.

5.2 Immutable handles
The introduction of a handle uvm physseg t which is
used to access the data structure that keeps physical
segment information, we came across a failing ATF

test case in the static array implementation which was
working as expected in the R-B tree implementation.
For the static array implementation we were using the
VM PSTRAT BSEARCH strategy.

The specific test case in question is
uvm physseg get prev which had the segments
being inserted into the system out-of-order, this meant
that the page frames of the segments that were inserted
in chunks were not in a sorted order. So the first chunk
may be in the 256 to 512 range and the second chunk
was in the 0 to 256 range. The same chunks if inserted
in sorted order resulted in a passing test.

After some amount of debugging we found out why
this rather seemingly trivial change in the order of inser-
tion was causing the tests to fail, this was a consequence
of changing the way the segment was being referenced
in the underlying data structure from static array imple-
mentation to R-B Tree implementation.

The handle in the static array is the index of the array
in which the segments are stored. So when segments are
inserted out of order, like in the example above the con-
tent of the index is likely to change causing this issue. In
case of the R-B tree, the handle is a pointer to the seg-
ment itself, which does not change when a new segment
is inserted or deleted.

In order to separately identify this property of
mutability we added a new test case in ATF
uvm physseg handle immutable which should al-
ways fail for static array implementation.

This is important to notify the users of the old API
and new API about the potential pitfall of assuming the
integrity of the handle when writing new code.

6 Booting the kernel

Once we had finished the first successful build of
NetBSD with uvm hotplug(9) enabled, it was time to
boot it and see if the changes actually work.

6.1 The init dance
Despite a successful compile of the hotplug enabled ker-
nel, the first boot led to a panic. We quickly identified
that kmem(9) is not available until uvm page init()

has done with all the initialization.
We went for maintaining a minimal “static array”

whose size is VM PHYSSEG MAX and once the init process
is over, switch over to the kmem(9) allocator.

In order to achieve this couple of wrapper
functions that exist only within the realm of
uvm physseg.c called uvm physseg alloc() and
uvm physseg free() were introduced.

We managed to write up the test cases for these
first, hence allowing for a smooth implementation of the

4



switching between static array and kmem(9) based allo-
cator to store the R-B Tree nodes.

6.2 Fragmentation of segments
One of the more interesting challenges we came across
when developing the API was the handling of the
“pages” array within the segment structure. The pages
array, pgs[] holds the pages for a given segment. Un-
plugging a segment is bound to fragment this pages array
which is currently allocated by kmem(9) allocator.

In order to overcome this issue we came up with an
idea to use the extent(9) memory manager to manage
the pages array.

The implementation of extent(9) [3] into
uvm hotplug(9) was also done with extensive
ATF tests that helped us out in minimising the downtime
from debugging the code when we finally managed to
boot the kernel with these features enabled.

7 Performance evaluation

Once we had a stable kernel up and running, we needed
to benchmark how the API performed. Since we had no
real world implementation of uvm hotplug(9) yet, we
decided to leverage the ATF framework to get this job
done for us.

7.1 Designing the test framework
The most frequent operation that is impacted by our
change is the look up call uvm physseg find() which
now searches through a R-B tree instead of a static
array. In order to simulate this we copied over the
PHYS TO VM PAGE() macro and the related code from
uvm page.c and then we wrote some ATF tests that
would load some memory segments, followed by mul-
tiple calls to PHYS TO VM PAGE() that would search for
random addresses within the plugged in segments.

for(int i = 0; i < 100; i++) {

pa = (paddr_t) random() %

(paddr_t) ctob(VALID_END_PFN_1);

PHYS_TO_VM_PAGE(pa);

}

The above snippet does tests for 100 calls like men-
tioned in the comment for it. This methodology is not a
perfect load test since there is a call to random() which
will cumulatively add up to the runtime of the function
we are trying to load test.

After some tweaking around we managed to write up
the tests varying from 100 calls to 100 Million calls and
then evaluate the time for them. For these tests we added

a ATF CHECK EQ(true, true) at the bottom of the test
indicating the test will never fail.1

A second type of performance test we came up with
is a search done on highly fragmented memory seg-
ments that have been unplugged from a fixed chunk.
This requires the boot process to be faked since we need
to invoke the uvm physseg unplug() to fragment the
memory. After this 10 Million calls are made to the
PHYS TO VM PAGE() macro and the memory segment
sizes were varied from 1 MB to 256 MB on a Virtual-
Box instance of NetBSD that had a total of 512 MB to
spare. This test is specific to R-B Tree implementation
and cannot be run for static array implementation, since
VM PHYSSEG MAX will limit the amount of fragments that
can happen to the array, and since this is a very small
value like 32, it would not make much sense to test it
out.

An example run of these tests with the standard
atf-run piped through atf-report will have a simi-
lar output.

t_uvm_physseg_load (1/1): 11 test cases

uvm_physseg_100: [0.003286s] Passed.

uvm_physseg_100K: [0.010982s] Passed.

uvm_physseg_100M: [8.842482s] Passed.

uvm_physseg_10K: [0.004398s] Passed.

uvm_physseg_10M: [0.954270s] Passed.

uvm_physseg_128MB: [2.176629s] Passed.

uvm_physseg_1K: [0.002702s] Passed.

uvm_physseg_1M: [0.094821s] Passed.

uvm_physseg_1MB: [0.984185s] Passed.

uvm_physseg_256MB: [2.485398s] Passed.

uvm_physseg_64MB: [0.914363s] Passed.

[16.478686s]

Summary for 1 test programs:

11 passed test cases.

0 failed test cases.

0 expected failed test cases.

0 skipped test cases.

8 Benchmark Results

We ran the tests in an i386 instance of VirtualBox run-
ning NetBSD.

The values used in the results section are an aver-
age of the 100 runs, we also show the Minimum and
Maximum values. In addition to this we also, ran a
dummy run on the random() function call without the
PHYS TO VM PAGE() translation happening. This was
done to find out how much additional time was taken up
by the random() [10]. This number did become signif-
icant for very large values of the looping test as we will
see in the results section.

5



8.1 Calls to PHYS TO VM PAGE()

Overview of results for different loop counters to the
PHYS TO VM PAGE() call. 2 3

This test was done for both the static array implemen-
tation as well as the R-B Tree implementation.

Test Name Average Minimum Maximum
uvm physseg 100 0.004599 0.003286 0.010213
uvm physseg 1K 0.002740 0.001991 0.005747
uvm physseg 10K 0.003491 0.002836 0.007941
uvm physseg 100K 0.011424 0.009388 0.017161
uvm physseg 1M 0.093359 0.079128 0.138379
uvm physseg 10M 0.892827 0.813503 1.172205
uvm physseg 100M 8.932540 8.434525 11.616543

Table 1: Comparison of average, minimum and maxi-
mum for R-B tree implementation.

Test Name Average Minimum Maximum
uvm physseg 100 0.004714 0.003511 0.013895
uvm physseg 1K 0.002754 0.002088 0.005318
uvm physseg 10K 0.003585 0.002666 0.005271
uvm physseg 100K 0.011007 0.009199 0.016627
uvm physseg 1M 0.086208 0.076989 0.116637
uvm physseg 10M 0.843048 0.782676 0.980598
uvm physseg 100M 8.434760 8.128623 9.132065

Table 2: Comparison of average, minimum and maxi-
mum static array implementation.

For a more in-depth analysis, we plotted graph which
gives a more magnified view of how the R-B tree imple-
mentation compares against the static array implementa-
tion over 100M calls to PHYS TO VM PAGE().

Figure 1: Static array vs R-B tree for 100M calls to
PHYS TO VM PAGE()

Clearly there is a 5.59% degradation in performance
with the R-B tree implementation.

The tabular representation of the various statistics for
the 100M Calls to PHYS TO VM PAGE(). We calculated
the Average, Standard Deviation (Population) and Mar-
gin of Error with a 95% confidence interval.

In a total of 100 runs, the random() function con-
tributed to roughly 2.03 seconds for the average runtime,
for a 100 Million calls to PHYS TO VM PAGE().

Static Array R-B Tree
Average 8.43476 8.93254
Standard Deviation 0.19331 0.41553
Margin of Error ±0.03789 ±0.08144

Table 3: Comparison of the average, standard de-
viation and margin of error for the 100M calls to
PHYS TO VM PAGE()

8.2 Calls to PHYS TO VM PAGE() after frag-
mentation

Number after test name indicates the amount of
memory on which fragmentation was done by
uvm physseg unplug(), memory was unplugged ev-
ery 8 Frames starting from PFN 8.

After unplug was completed PHYS TO VM PAGE()was
called 10M (million) times for every test.

Test Name Average Minimum Maximum
uvm physseg 1MB 1.015810 0.941942 1.361913
uvm physseg 64MB 0.958675 0.877151 1.279663
uvm physseg 128MB 2.155270 2.024838 2.866540
uvm physseg 256MB 2.550920 2.360252 3.736369

Table 4: Comparison of average, minimum and max-
imum execution times of various load tests with
uvm hotplug(9) enabled on fragmented memory seg-
ments.

9 Conclusions and future work

In this paper, we have presented a new API to allow hot-
plugging of RAM managed by NetBSD’s uvm subsys-
tem. Despite the fairly technical and intrusive details of
the implementation itself, the key findings we would like
to present are about method and motivation - Systems
Programming can be made much less stressful by using
existing Software Engineering techniques.

We also note the availability of general purpose APIs
such as rbtree(3) and extent(9) in the NetBSD kernel,
which makes implementation much less headache. For
example, the presence of these APIs made the unplug
implementation unremarkable.

6



Figure 2: R-B tree performance for 10M Calls to
PHYS TO VM PAGE() after fragmentation at every 8 PFN

Note however that the API does not take responsibility
for ensuring that pages that are unplugged are actually
not in use. This is expected to be the responsibility of the
respective driver writer [4]. This is a deliberate division
of labour, which allows for clean abstraction. See the
Xen balloon(4) [2] driver for an example of the API in
action.

Finally, as Future work, we would like to encourage
other NetBSD developers to use this API to write hot-
plug/unplug drivers for their favourite platforms with
suitable hardware. We also encourage other BSDs to
pick up our work - since this will clean up the current
legacy implementations which are pretty much identical.

10 Acknowledgments

We would like to thank everyone who helped review
drafts of this paper. Special thanks to Chuck Silvers
for API review loops, and Nick Hudson for powering us
through the code integration into NetBSD -current

References
[1] atf(7) - Automated Testing Framework, August 2010. See

http://netbsd.gw.com/cgi-bin/man-cgi?atf+7+

NetBSD-current for further information.

[2] balloon(4) - Xen memory balloon driver, July 2011. See
http://netbsd.gw.com/cgi-bin/man-cgi?balloon+4+

NetBSD-current for further information.

[3] extent(9) - general purpose extent manager, July 2014. See
http://netbsd.gw.com/cgi-bin/man-cgi?extent+9+

NetBSD-current for further information.

[4] uvm hotplug(9) port-masters’ FAQ., December 2016. See
https://wiki.netbsd.org/features/uvm_hotplug/ for
further information.

[5] kmem(9) - kernel wired memory allocator, February 2016.
See http://netbsd.gw.com/cgi-bin/man-cgi?kmem+9+

NetBSD-current for further information.

[6] Linux Memory Hotplug, October 2007. See https://www.

kernel.org/doc/Documentation/memory-hotplug.txt

for further information.

[7] MEWBURN, L., AND GREEN, M. build.sh: Cross-building
NetBSD, September 2003. See http://www.mewburn.net/

luke/papers/build.sh.pdf for further information.

[8] Platforms Supported by NetBSD, December 2016. See https:

//www.netbsd.org/ports/ for further information.

[9] queue(3) - implementations of singly-linked lists, lists, simple
queues, tail queues, and singly-linked tail queues, October 2016.
See http://netbsd.gw.com/cgi-bin/man-cgi?queue+3+

NetBSD-current for further information.

[10] random(3) - better random number generator, June 2014. See
http://netbsd.gw.com/cgi-bin/man-cgi?random+3+

NetBSD-current for further information.

[11] rbtree(3) - red-black tree, August 2016. See http://netbsd.

gw.com/cgi-bin/man-cgi?rbtree+3+NetBSD-current

for further information.

[12] Test Driven Development, January 2017. See https://en.

wikipedia.org/wiki/Test-driven_development/ for fur-
ther information.

[13] tree(3) - implementations of splay and red-black trees, July
2011. See http://netbsd.gw.com/cgi-bin/man-cgi?

tree+3+NetBSD-current for further information.

[14] uvm hotplug(9) - Memory hotplug manager, November 2016.
See http://netbsd.gw.com/cgi-bin/man-cgi?uvm+

hotplug+9+NetBSD-current for further information.

[15] uvm(9) - virtual memory system external interface, March
2015. See http://netbsd.gw.com/cgi-bin/man-cgi?

uvm+9+NetBSD-current for further information.

[16] Hot-add memory support in Windows Server, October
2010. https://msdn.microsoft.com/en-us/library/

windows/hardware/dn613938(v=vs.85).aspx.

Notes
1This is done because the test is NOT a check of correctness of the

function being called, we assume the function works as expected when
this test is running.

2The letter beside the number indicates the amount in thousands (K)
or millions (M).

3All run times are recorded seconds.

7


