
Devsummit – Entropy pools

Taylor ‘Riastradh’ Campbell
campbell@mumble.net

riastradh@NetBSD.org

EuroBSDcon 2015
Stockholm, Sweden

October 2, 2015



Entropy pool

I Combine environmental observations into small scrambled
state.

I Reveal obscured state to kernel or userland /dev/urandom for
cryptographic or Monte Carlo purposes.

I Inputs: rndsources—clock skew, envsys, hardware RNG, . . .

I Outputs: seed for cprng(9), /dev/urandom



Security model

I Attacker sees some outputs of /dev/urandom: can’t predict
unseen outputs, past or future.

I Attacker sees kernel memory: can’t predict past unseen
outputs.



Current implementation

I Input:
I Hardware driver calls rnd add data.
I rnd add data acquires global mutex (!) and enters sample

into global sample queue.
I Softint processes sample queue.
I For each sample: feed into 4096-bit LFSR.

I Output:
I Compute 160-bit SHA-1 of 4096-bit LFSR state.
I Feed hash back in as if input.
I Reveal xor of two 80-bit halves of hash.



Crypto analysis?

I No scrutiny by cryptographers to my knowledge since it was
written in 1997.

I Ad-hoc components: LFSR, SHA-1.

I Old crypto: SHA-1.



Performance analysis?

I One global sample queue protected by mutex.
I Single point of contention for all samples:

I Every network packet?
I Every (503rd) uvm fault?
I Every . . . ?



Proposed new crypto

I Keccak-f1600: single fixed permutation of 1600-bit strings.

I Keccak-f1600 conjectured to ‘look random’.

I Can use to build hash function, MAC, PRF, block cipher,
stream cipher, . . .

I Keccak (SHA-3) sponge duplex construction:
I State: 1600-bit Keccak state
I Input: xor 1088 bits of samples into state, then apply Keccak

permutation
I Output: reveal first 256 bits of state, then apply Keccak

permutation

I Proven to have same security as, e.g., SHA-3—reduces to
security of Keccak permutation.



Proposed new state management

I Per-CPU entropy pool.

I Input: Xor up 1088 bits of samples into pool at a time. (No
interprocessor synchronization.)

I Input: When buffer full, schedule softint to apply Keccak
permutation; drop samples until that happens. (No
interprocessor synchronization.)

I Output: Cross-call to extract output from all per-CPU
entropy pools as input into a global entropy pool, then extract
output from that one.



Questions

I Throughput of SHA-1/LFSR vs Keccak?

I Any other questions?

(. . . when will I have time to finish my draft implementation?)


