
Modernizing NetBSD Networking Facilities and Interrupt Handling

Ryota Ozaki

ozaki-r@iij.ad.jp
Internet Initiative Japan Inc.

Kengo Nakahara

k-nakahara@iij.ad.jp
Internet Initiative Japan Inc.

Abstract
Networking facilities of NetBSD still have a lot of room
for improvement, especially the scalability of its network
processing is one of big issues that we have to address.
We have been working on making the network stack and
network device drivers MP-safe to run NetBSD network-
ing facilities run in parallel. Supporting MSI/MSI-X and
multi-queue (with interrupt affinity) features of network
devices in NetBSD device drivers is also an important
task towards the goal.

This paper describes the current status of NetBSD net-
working facilities and our recent work to improve them.
The paper also reports the results of preliminary evalu-
ations on our implementation and shows that our imple-
mentation scales up well on a multi-core system.

1 Introduction

Nowadays the direction of computer processor evolution
has moved to multiple processor cores in one chip from
high frequency clock rate of one processor core. Re-
cent commodity x86 processors on server machines gain
16 cores and even more typical smart phones have two
or four cores. Utilizing multi-cores is one of important
tasks for operating systems (OS).

NetBSD supports multi-core processors on many plat-
forms such as x86, ARM and PowerPC. User processes
on NetBSD can run in parallel on multiple CPUs and
many kernel components such filesystems and a lot of
device drivers can also utilize multiple CPUs. However,
most of the networking facilities of NetBSD do not work
in parallel.

We have been working on making the network stack,
mainly Layer 2, and device drivers MP-safe to run
NetBSD networking facilities run in parallel. Further-
more, we have been implementing better interrupt han-
dling facilities including MSI/MSI-X support, interrupt
affinity and multi-queue support.

This paper is organized as follows. Section 2 describes
the current status of network processing in NetBSD. Sec-
tion 3 describes how to make networking facilities MP-
safe; we pick vioif and bridge to explain that in de-
tail. Section 4 and Section 5 describe how we support
hardware mentioned above in NetBSD. Section 6 reports
the results of preliminary performance evaluations on our
implementation. At last, Section 7 concludes the paper.

2 Current Status of Network Processing

In this section, we describe the current status of network
processing of NetBSD, including how the network facil-
ities of NetBSD work on multi-core systems, how tra-
ditional mutual exclusion facilities work and what are
problems of the network processing.

2.1 Basic network processing
Here we describe about only Layer 2 and below of the
network stack.

When a user process tries to send a packet to a net-
work, the socket layer, the protocol stack and a TX pro-
cedure of a network device driver are executed in a con-
text of the user process. Before calling the TX procedure
of the network device driver, sending packets are pushed
to the sender queue of the driver called if snd. The TX
procedure dequeues a packet from the queue and sends
it one by one, or dequeues and sends multiple packets
at once. In either case, the driver may stop sending in
some cases, for example, there is no TX descriptor to
send more packets. The driver holds pending packets and
later sends them once it is possible again.

RX procedures are a bit complex. An interrupt han-
dler of a network device driver handles network pack-
ets in hardware interrupt context. The handler passes the
packets up to the network protocol stack. In NetBSD, the
handler does not directly handle Layer 3 and above pro-
tocols. Instead, it calls a software interrupt (hereinafter

called softint) handler to perform such protocol process-
ing; it pushes the packets to the queue of a softint for
each protocol such as IPv4, IPv6 and ARP1.

Each softint has a priority that is lower than hardware
interrupt handler (we will describe priorities of softints
in Section 2.2.2). A softint has its own context and can
sleep or block unlike hardware interrupt context. Switch-
ing to softint context from hardware interrupt context is
faster than switching to a user process (we use LWP to
refer to it hereinafter) context.

Network processing of Layer 2 and below is al-
ways executed with holding the big kernel lock of
NetBSD, called KERNEL LOCK described in the next
section. The output routine of Layer 2 (ether output),
hardware interrupt handlers and softint handlers such
as bridge forward are executed with holding KER-
NEL LOCK. softnet lock which is a mutex (de-
scribed in Section 3.1.1) is also held in softint handlers.
Therefore, most network processing of Layer 2 and be-
low is serialized.

2.2 Traditional mutual exclusion facilities
2.2.1 KERNEL LOCK

KERNEL LOCK is a kind of big (giant) kernel locks in
the literature. By holding it, a LWP can prevent other
LWPs (including softint) that try to hold the lock from
running on other CPUs.

The lock can be used in any contexts including hard-
ware interrupt contexts. A LWP can sleep with holding
the lock; the lock is released temporarily when the LWP
is going to sleep. Constraints of the lock are relatively lax
and we can easily use it widely in the kernel. However,
it is a biggest obstruction of parallel network processing
and we have to remove them all from the kernel to utilize
multi-core capabilities.

2.2.2 IPL and SPL

NetBSD defines interrupt priority levels (IPL):
IPL HIGH (a.k.a., IPL SERIAL), IPL SCHED and
IPL VM (a.k.a., IPL NET) for hardware interrupts in
descending order, IPL SOFTSERIAL, IPL SOFTNET,
IPL SOFTBIO and IPL SOFTCLOCK for software inter-
rupts in descending order, and IPL NONE for the lowest
level of IPL.
spl* APIs, such as splhigh and splnet, allow

changing the system interrupt priority level (SPL). The
SPL is an IPL under which the system is running, and
the system cannot be interrupted by a lower interrupt than
the SPL. For example, it is used to protect a data shared

1Note that there is an exception; the fastforward mechanism directly
calls a TX routine of a network device driver from a receive interrupt
handler if possible.

between the network stack and an interrupt hander of a
network device by raising the SPL to IPL NET that is an
IPL for hardware interrupts of network devices. splnet
is used to change the SPL to IPL NET. splx restores the
SPL with a passed SPL that is normally a return value of
a spl function. Note that we cannot lower the SPL; if we
try to do so, the operation is just ignored.

The limitation of the mechanism is that it prevents
only interrupts that happen on the current CPU from ex-
ecuting. Thus, it does not work at all as a mutual exclu-
sion between multiple CPUs. For MP-safe networking,
we should replace most of splnet with mutexes.

2.3 How each component works

2.3.1 Network device drivers

NetBSD does not have per-cpu interrupt affinity and dis-
tribution facility. Every interrupts go to CPU#0, which
means that every interrupt handlers and subsequent net-
work processing including softint for each protocol pro-
cessing described in Section 2.1 run on CPU#0. Thus,
the current implementations of the device drivers do not
provide any mutual exclusion between interrupt han-
dlers. On the other hand, packet transmissions can be ex-
ecuted on any CPUs. We always hold KERNEL LOCK
before calling a packet transmission routine of a device
driver so that only one instance of the routine is executed
in the system at the same time.

Shared resources between LWPs and hardware inter-
rupt handlers are simply protected by splnet. Mutual
exclusion between LWPs and softint are currently done
by KERNEL LOCK and/or softnet lock.

2.3.2 Layer 2 forwarding

Here we describe about bridge networking facility that
connects two or more network interfaces at Layer 2 and
forwards Ethernet frames between them. Figure 1 shows
a basic forwarding flow of the Layer 2 forwarding.

When an incoming frame comes to a network inter-
face attached to a bridge, it passes it up to the bridge.
bridge input is first called to handle the frame. If the
frame directs to the machine, it receive the frame via
ether input. If not, the bridge forwards the frame via
bridge forward.
bridge is a half-baked component in NetBSD; it can

run in any of hardware interrupt, softint and normal LWP
contexts. Most of forwarding routines run in softint con-
text (bridge forward) while the packet receive pro-
cessing (bridge input) runs in hardware interrupt con-
text and we have to use a spin mutex to protect shared
resources between the two contexts. Layer 3 protocol
processing runs in a softint context or a normal LWP con-

schedule

softint

vioif_rx_deq

bridge_input bridge_forward

vioif_start

device device

hardware interrupt software interrupt

bridge

vioif

RX TX

Figure 1: Layer 2 forwarding

text as mentioned in Section 2.1 so that we can use any
mutual exclusion facilities.

Currently any procedures in bridge are serialized by
the KERNEL LOCK and additionally softnet lock is
used for bridge forward. Shared resources between
the hardware interrupt context and the other contexts are
protected by splnet.

3 MP-safe Networking

In this section, we first describe mutual exclusion fa-
cilities that are usable to make networking facilities of
NetBSD MP-safe. Next, we describe how to make net-
working facilities of NetBSD MP-safe by giving exam-
ples.

3.1 Mutual exclusion facilities for MP-safe
Table 1 summarizes all mutual exclusion facilities of
NetBSD and their characteristics.

3.1.1 mutex

NetBSD’s mutexes are almost identical to Solaris’s
ones [3]. There are two types of mutexes: spin mutex
and adaptive mutex. A spin mutex is used as mutual ex-
clusion between LWPs (including softint) and hardware
interrupt handlers running on different CPUs. It busy-
waits until it succeeds to take the lock. A LWP cannot
sleep with holding a spin mutex.

An adaptive mutex is used as mutual exclusion be-
tween LWPs (including softint). It first tries busy-waiting
if a mutex holder of the mutex is running on another
CPU. If it fails to take the lock after some periods or

in the first place the mutex holder is (was) running on
the same CPU, it sleeps until the mutex holder releases
the mutex. Thus, an adaptive mutex cannot be used in
hardware interrupt handlers. A LWP is able to sleep with
holding an adaptive mutex (at least as of this writing),
however, that is not recommended. Sleep-able opera-
tions, such as memory allocations, should be done out
of critical sections, otherwise performance may be de-
graded on multi-core systems.

Note that NetBSD does not support reentrant mutexes
unlike FreeBSD, so we have to carefully use mutexes to
avoid deadlock.

3.1.2 rwlock

rwlock is a kind of readers-writer lock in the literature.
A critical section protected by an rwlock allows multiple
readers to access it concurrently while a single writer has
exclusive access to the critical section. Readers and writ-
ers may block on an rwlock, thus, rwlocks cannot be in
hardware interrupt context. Like adaptive mutexes, read-
ers and writers spin on an rwlock when there is no waiter
and an owner of the lock is running on another CPU.

An rwlock is suited for cases that there are many read-
ers and a few writers, in other word, there are frequent
reads and infrequent writes to a protected data. How-
ever, if a data has a higher ratio of read(er)s to write(r)s
(e.g., a case of ifnet list that is modified only when
an interface is added or deleted), pserialize that we
will mention in the next section is more appropriate to
use for that case.

3.1.3 pserialize

Making MP-safe by serializing concurrent processes
works but it is known that it does not scale [4]. Using a
lockless data structure and implementing fast paths with-
out any locks can work and scale well. However, there
is an issue to solve; how we safely destroy an object that
users may be holding. One solution for the issue is to
have a reference counting mechanism, although it also
prevents scaling up because a counter can be a point of
cache contentions.
pserialize is a readers-writer synchronization de-

signed for lock-less read operations. The basic idea of
pserialize is similar to RCU [5, 4] that is a passive syn-
chronization mechanism of Linux. It allows readers to
access shared resources with low overhead while a writer
has to wait slightly long periods until it can guarantee
that readers have released holding shared resources. To
surely guarantee the condition, pserialize enforces that a
reader inside a critical section must not sleep and block.
With the assumption, we can know that readers have re-
leased holding objects once a context switch on all CPU

Usable on MP (1) HW interrupt (2) Sleep/block-able Reentrant Callable facilities (3)

KERNEL LOCK yes yes yes yes all
spl* no yes yes yes all (4)

mutex (spin) yes yes no no mutex (spin)
mutex (adaptive) yes no yes (5) no all
rwlock yes no yes (5) no all
pserialize (reader) yes no no no (6) mutex (spin)

(1) Does it affect to activities on other CPUs? (2) Can it be used in hardware interrupt context? (3) Facilities that can be used in its critical section
(4) It should not lower SPL (5) Possible but not recommended (6) Possible but not expected

Table 1: Mutual exclusion facilities

cores happens twice. There is another constraint that a
shared data collection, for example a linked list, needs to
be lock-free and allow a writer to remove a data from the
collection without interfering readers.

On a writer side, we use pserialize perform to
wait for readers going out from a critical section. A typ-
ical usage of pserialize perform is like this:

mutex_enter(&writer_lock);

/* remove a object from the collection */

pserialize_perform(psz);

/*

* Here we can guarantee that nobody is

* touching the object

*/

mutex_exit(&writer_lock);

/* So we can free the object safely */

The lock (adaptive mutex) is required to protect the
shared data collection. After pserialize perform,
pserialize guarantees a removed object is not being ac-
cessed by anyone.

3.2 Case studies
In this section, we describe how to make network de-
vice drivers and network facilities MP-safe. We pick
if vioif network device driver and bridge as exam-
ples for our explanation in this paper.

3.2.1 Making vioif MP-safe

The basic strategy is quite simple: get rid of KER-
NEN LOCK and introduce fine-grain locking [2].

We introduce two spin mutexes, one for TX and
the other for RX. The TX mutex is always held when
a TX procedure is sending packets (vioif start)
and the TX interrupt handler is cleaning up used
mbufs (vioif tx vq done). The RX mutex is
held when the RX interrupt is handling packets
(vioif rx deq) and filling mbufs to RX descriptors

(vioif populate rx mbufs). The RX mutex is re-
leased when vioif rx deq calls a upper layer routine
if input (normally it is ether input), and re-taken
after returning from the upper routine.

With the preparations, the device driver can work
without global locks. We enable the interrupt han-
dlers to run without KERNEL LOCK by setting the
PCI INTR MPSAFE to pci intr establish. Addition-
ally, we use the interrupt distribution facility that we have
implemented and will describe later. By doing so, we
can run TX procedures and RX procedures in parallel,
and also run multiple RX interrupt handlers on different
CPUs. However, TX procedures on multiple CPUs are
still serialized due to KERNEL LOCK as we mentioned
before. To this end, we have to make upper layer com-
ponents MP-safe. We have done this only for the bridge
forwarding facility.

Shutdown processes are great concerns when making
a component MP-safe. We have to guarantee that, for
example, a freed packet is not accessed by anybody and a
stopped device driver does not process any more packets.
We introduce a flag to if vioif that indicates the driver
is stopping. The shutdown routine (vioif stop) has to
set the flag before starting the shutdown sequence. The
TX and RX procedures have to check the flag to know
whether the driver can proceed its procedure. Especially
we have to check it after coming back from a upper layer
routine in vioif rx deq.

3.2.2 Making bridge MP-safe

A bridge has two important resources: a bridge mem-
ber list and a MAC address table. A bridge member list
is a linked list and each item points to an interface ob-
ject. The list is not changed in fast paths, i.e., during
packet processing, so we can use a pserialize for the list2.
We also need a reference counting mechanism for each

2Note that pserialize does not intend to be used in hardware in-
terrupt context. However, in practice, we can use it for readers in hard-
ware interrupt context using splhigh. This is a temporal solution until
we make the entire Layer 2 network stack run in softint context.

bridge member to work the pserialize correctly because
bridge members can be held by users over sleep-able op-
erations, which violates a constraint of pserialize that
is mentioned in Section 3.1.3. On a reader side, we in-
crement a reference count of a bridge member during
pserilize read and release the reference after using
the bridge member. On a writer side, we first remove
a bridge member from the member list and then use
pserialize perform to guarantee nobody is trying to
hold the bridge member anymore. Then, we synchronize
on the reference count of the bridge member to wait for
a possible user to release the bridge member. After that,
we can ensure that nobody is holding the bridge member
and safely free the bridge member.

A MAC address table is a hash table with linked lists.
Linked lists of a table are not changed in fast paths so
that we can use a pserialize for linked lists. Unlike a
bridge member list, an entry of a table will not be held
over sleep-able operations, thus, we do not need a ref-
erence counting mechanism in addition to the pserialize.
Nevertheless, we have another issue to tackle; we need
to release a bunch of entries at once, for example, a sys-
tem administrator wants to flush all MAC address entries
from a bridge. If we try to get rid of each entry one
by one through a pserialize, it would take longer time
than we desire because the pserialize is extremely slow.
Therefore, we remove entries at one pserialize. To this
end, we need to allocate a temporal buffer to accommo-
date releasing entries before taking a mutex for the MAC
address table because allocating memory with holding a
mutex is not recommended nowadays in NetBSD. The
fact enforces that we have to retry allocating a buffer
when we know the allocated memory is short since the
releasing entries have been increased between the allo-
cation and the mutex acquisition.

This is a pseudo code around pserialize perform

in if bridge.

retry:

allocated = sc->entry_count;

list = kmem_alloc(sizeof_entry * allocated, ...);

/* Here the # of entries can be changed */

mutex_enter();

if (sc->entry_count > allocated) {

/* The entries increased, we need more memory */

mutex_exit();

kmem_free(list, ...);

goto retry;

}

/* Remove entries from the list */

i = 0;

LIST_FOREACH_SAFE(entry, sc->list, ...) {

bridge_rtnode_remove(sc, entry);

list[i++] = entry;

}

/* Waiting for users having gone */

if (i > 0)

pserialize_perform();

mutex_exit();

/* Destroy entries here */

while (--i >= 0)

bridge_rtnode_destroy(brt_list[i]);

kmem_free(list, ...);

The code gets more complex than ever, however, lock
contentions are greatly eliminated by using a pserialize
instead of mutexes.

3.3 An alternative architecture for net-
work device drivers

NetBSD has a new architecture of network device drivers
designed by Matt Thomas, a core NetBSD developer.
The concept of the architecture is to run most packet
processing in softint context. A softint handler processes
both TX and RX of a device driver; both a upper protocol
layer and an hardware interrupt handler just queues send-
ing/incoming packets to the softint and calls it to perform
TX/RX.

The benefits of the architecture are:

• It reduces execution periods of hardware interrupt
handlers and prevents interrupt overload causing
livelock [6].

• It allows whole the protocol stack run in softint con-
text, which especially simplifies tasks on making
Layer 2 protocol processing MP-safe.

• It simplifies locking for MP-safe because only soft-
int processes TX and RX in the architecture.

• It would easily migrate to the polling model of
packet processing such as Linux NAPI.

A drawback of the architecture would be an overhead
of switching to a softint on any packet processing. We
suppose that switching to a softint is enough fast 3. Actu-
ally the NAPI framework of Linux, which uses softirq
for receiving packets, has proved that it can archive good
throughput with switching to softirq on every packet re-
ceptions if it receives incoming packets in one switch.

We consider migrating all network device drivers to
the architecture by providing a framework for it.

4 Interrupt Process Scaling

In order to achieve high performance parallel network
processing, we need to run interrupt handlers in paral-
lel on multiple CPUs. Furthermore, to avoid contentions

3In NetBSD, some CPU architecture implements fast softint and
others does not implement it. We assume a fast version here.

against packet buffers between interrupt handlers, we
need to support the multi-queue facility of modern net-
work devices, which requires MSI/MSI-X.

In this section, we describe the technologies and what
we have done to support them in NetBSD.

4.1 MSI/MSI-X support

Message Signaled Interrupt (MSI/MSI-X) support is op-
tional for PCI 3.0 devices and required for PCI Express
devices [7]. They use memory read/write instead of inter-
rupt signal line to notify interrupts to CPUs, so they are
not restricted by hardware as much as legacy interrupts.
Some devices (and hypervisors) do not support legacy
INTx interrupts and support only MSI/MSI-X. There-
fore, MSI support is required by OSes that want to use
such devices.

Both MSI and MSI-X can use multiple interrupts for
one device. MSI-X allows issuing multiple interrupts
from one device at the same time while MSI can send
only one interrupt at the same time. To distribute inter-
rupts from one device at the same time to multiple CPUs,
it is required to support not only MSI but also MSI-X.

Currently, NetBSD supports only MSI on only Pow-
erPC while FreeBSD and DragonFlyBSD support both
MSI and MSI-X, and OpenBSD supports only MSI.
We design APIs for MSI and MSI-X and implement
these drivers for NetBSD/x86. The APIs (shown in Ap-
pendix A) are similar to FreeBSD’s MSI/MSI-X APIs to
port device drivers easily.

4.2 Interrupt distribution

A device can distribute interrupts to multiple CPUs by
using MSI-X, however the device does not distribute in-
terrupts automatically. In the case of FreeBSD, MSI-X
APIs automatically bind each interrupt to CPU in a round
robin manner. Furthermore, FreeBSD has cpuset(1)

-x option and intr setaffinity kernel API, but they
just bind an interrupt thread to a specified CPU and do
not use MSI/MSI-X functions.

We implement intrctl(8) and
intr distribute(9) which let NetBSD support
interrupt distribution. The command and kernel API
are defined as MI but currently implemented only for
amd64 and i386. A device driver that wants to distribute
interrupts can do it as the driver author desires by
using this API. Furthermore, the system administra-
tors can distribute interrupts as they desire by using
intrctl(8).

Figure 2: Example of a MSI-X setting

5 Multi-queue

Modern 1 Gigabit or more Ethernet controllers have
more than one TX/RX queues, which is called multi-
queue. When we want to use multi-queue, we need to
setup Ethernet controller registers and a MSI-X table

that is defined by PCI-SIG specification. Figure 2 is
a setting example. In this example, we assign a MSI-
X vector for each TX queue, RX queue and other in-
terrupts that include link state change interrupts. A
MSI-X table is mapped in PCI configuration space and
has entries of a MSI-X vector. Each entry consists of
PCI-SIG defined fields and system-specified fields. The
system-specified fields include, for example, Message
Data, Message Upper Address and upper 30 bits of
Message Address. In x86 case, the Destination

ID [1] in the Message Address binds the MSI-X vector
to a CPU core.

To bind a TX or RX queue to a MSI-X vector, we
set an index of the MSI-X vector in the MSI-X table
to one of a set of registers, called Interrupt Vector

Allocation Registers, for the queue on the Ethernet
controller. The case of Figure 2, we set as follows:

• index 0 to the register for TX queue 0

• index 1 to the register for TX queue 1

• index 2 to the register for RX queue 0

• index 3 to the register for RX queue 1

• index 4 to the register for other interrupts

In our implementation, these bindings are setup in the
initialization of each device driver and cannot be changed
during OS running.

For MSI-X table, we setup MSI-X table entries for
MSI-X vectors, for example, mask bits in the PCI-SIG

defined fields and binding MSI-X vectors to CPU cores
in the x86-specified fields. The case of Figure 2, we set
as follows:

• cpuid 1 to the entries of index 0 and 2

• cpuid 2 to the entries of index 1 and 3

• cpuid 0 to the entry of index 4

In out implementation, these bindings are setup in MI
code and can be changed by intrctl(8) during OS running.

5.1 Scaling by Multi-queue
A system can use multi-queue with the above setting,
however it does not scale without appropriate CPU affin-
ity. If all TX queue and RX queue affinity to the same
CPU, TX procedures and RX procedures do not scale. As
an example, we describe the relationship between RX,
TX procedures and CPU affinity for bridge.

A RX procedure runs on a CPU that a RX queue inter-
rupt occurs and bridge forward also runs on the same
CPU, therefore it scales by assigning each MSI-X vector
for a RX queue to a different CPU.

In contrast, a TX procedure runs on a CPU which
bridge forward runs, but the TX procedure does not
necessarily runs on a CPU which TX queue interrupts
occur. Therefore, to scale TX procedures, it is re-
quired not to assign each MSI-X vector for a TX queue
to a different CPU, but to assign each TX procedure
of bridge forward to a different CPU using TX side
multi-queue. We will describe this detail in Section 5.4.

We implemented multi-queue support for two Ethernet
drivers that are required for our projects. One is if vmx

and the other is if wm.
If vmx is the driver of VMXNET3 that is a paravir-

tualized network device of VMware. We implemented
both RX side multi-queue and TX side multi-queue for
if vmx, then we tested and measured the performance of
it on VMware ESXi.
If wm is the driver of Intel Ethernet controller se-

ries including GbE. The supported devices of NetBSD’s
if wm are equal to the sum of FreeBSD’s if em and
if igb. We implement RX side and TX side multi-
queues for if wm.

5.2 Common part
As described above, to scale up by using multi-queue, the
driver is required to support MSI-X. Meanwhile, there
are multiple ways to bind each hardware queue and MSI-
X vector. In our implementation, we bind one MSI-X
vector for each RX queue handler and each TX queue
handler. The other way such as FreeBSD’s if igb, a pair

of one TX queue and RX queue is bound to one MSI-X
vector.

Furthermore, it needs for if wm to support fallback
to MSI or INTx, because if wm supports also the old
devices that do not support MSI-X. We implement tiny
INTx code to keep clean fallback code.

Note that old PCI host bridges do not support
MSI/MSI-X. Some PCI Express root complexes should
not use MSI or MSI-X because of their errata. So, we im-
plement a framework to disable MSI or MSI-X for such
host bridges and devices.

5.3 RX side
We implement I354 RX side multi-queue support to
if wm. The implementation consists of two parts, sep-
arating RX-related variables from wm softc and setting
Ethernet controller registers.

Separating RX-related variables from wm softc helps
us to decide the number of using hardware queues dy-
namically. We implement struct wm rxqueue to man-
age each RX queue. We cannot determine the suit-
able number of using hardware queues statically, be-
cause the number depends on the number of CPUs, hard-
ware queues and MSI-X vectors, which vary according
to hardware.

We implement the code setting Ethernet controller reg-
isters. In particular, we extend the code to use registers
for multiple queues. We implement setting the regis-
ters that decide which incoming frames use a hardware
queue. The registers are not used if the driver uses only
one queue.

At this point, we have implemented I354 support code
only. It may be able to be used for other Ethernet con-
trollers that use the same MSI-X setting registers, but we
have not tested yet. At least, 82574’s MSI-X setting is
different from I354. We should implement register set-
ting codes for such devices.

5.4 TX side
We implement I354 TX side multi-queue support to
if wm as well as RX side multi-queue. The TX imple-
mentation is similar to the RX implementation except for
new ifnet interface.

With current TX interface if start, Layer 2 en-
queues a mbuf to if snd queue bound to the interface,
then the driver dequeues the mbuf in if start func-
tion. In contrast, with new interface that we imple-
ment (if transmit), Layer 2 calls if transmit only.
if transmit consists of two parts, enqueue and de-
queue.

Before describing the enqueue process, we describe
the relation between the number of CPUs and the num-

ber of TX queues that the driver is actually using. When
the number of the TX queues is more than the number
of CPUs, it means that some CPUs are assigned two or
more TX queues. Even if one CPU has multiple TX
queues, the CPU cannot scale more than one TX queue
because the CPU can work only on one queue at a time.
When the number of the TX queues is less than the num-
ber of CPUs, it means that some CPUs share the same
TX queue. In this case, the performance is lower than
that all CPUs are assigned a dedicated queue because of
lock contention on TX queue operations. Therefore, it is
ideal that the number of TX queues is equal to the num-
ber of CPUs and each TX queue is assigned to a different
CPU.

In the enqueue part, the driver selects if snd bind-
ing a TX queue to use on the CPU. On an ideal situation
as described above, the driver use a dedicated if snd

and TX queue assigned to the CPU. Otherwise, we need
some selection logic of TX queues. Our implementa-
tion selects a TX queue in a simple round-robin manner.
When there are 8 CPUs and 4 TX queues, we set as fol-
lows:

• CPU 0 uses TX queue 0

• CPU 1 uses TX queue 1

• CPU 2 uses TX queue 2

• CPU 3 uses TX queue 3

• CPU 4 uses TX queue 0

• CPU 5 uses TX queue 1

• CPU 6 uses TX queue 2

• CPU 7 uses TX queue 3

In the dequeue part, the driver can dequeue a mbuf from
the if snd binding one of TX queues with holding only
the TX queue lock. As a result, the dequeue part can also
run concurrently.

In our current implementation, if transmit is used
by bridge only. Other Layer 2 and 3 components use
if start yet.

6 Performance

We evaluate our implementation in terms of throughput
with different CPU affinities and frame sizes. This sec-
tion describes the results of our experiments.

Figure 3: measurement environment

6.1 Experimental setup

We set up Supermicro A1SRi-2758F for our measure-
ments as a DUT (device under test), which has an 8 core
Atom C2758 SoC including a 4 port I354 Ethernet con-
troller.

We set up two kernels; one is a kernel built based
on NetBSD-current source code at 2015/01/07 with the
GENERIC configuration (GENERIC kernel), and the
other is a kernel built based on our MP-safe implementa-
tion with the GENERIC configuration plus NET MPSAFE

enabled (NET MPSAFE kernel). We use each kernel
as a bridge, and send UDP packets over the bridge bi-
directionally (Figure 3).

We changed CPU affinities of TX and RX queues for
NET MPSAFE kernel by using intrctl(8). The affin-
ity variations are 1 core, 2 cores, 4 cores and 8 cores; the
detailed affinities are shown in Table 2. Note that the ta-
bles show only RX queues that affect the results of the
measurements.

We setup the driver of I354 (if wm) to select the TX
queue whose interrupt is bound to the CPU to be run-
ning bridge forward in this measurement. Therefore,
mbufs do not move between CPU cores.

In NET MPSAFE implementation for Atom C2758
and I354, the driver use 4 RX queues and 4 TX queues,
that is, use 4 MSI-X vectors for RX queue handlers, 4
MSI-X vectors for TX queue handlers, and 1 MSI-X vec-
tor for link state changing handler. It is not cared to affin-
ity of MSI-X vector for link state changing interrupt, be-
cause the interrupt rarely occurs.

Table 2: CPU core affinities
The four tables show affinities of RX queues on 1 core, 2

cores, 4 cores and 8 cores from top to bottom respectively.
CPU#0 CPU#1 CPU#2 CPU#3 CPU#4 CPU#5 CPU#6 CPU#7

wm0 RX0
wm0 RX1
wm0 RX2
wm0 RX3
wm2 RX0
wm2 RX1
wm2 RX2
wm2 RX3

CPU#0 CPU#1 CPU#2 CPU#3 CPU#4 CPU#5 CPU#6 CPU#7
wm0 RX0
wm0 RX1
wm0 RX2
wm0 RX3

wm2 RX0
wm2 RX1
wm2 RX2
wm2 RX3

CPU#0 CPU#1 CPU#2 CPU#3 CPU#4 CPU#5 CPU#6 CPU#7
wm0 RX0

wm0 RX1
wm0 RX2

wm0 RX3
wm2 RX0

wm2 RX1
wm2 RX2

wm2 RX3

CPU#0 CPU#1 CPU#2 CPU#3 CPU#4 CPU#5 CPU#6 CPU#7
wm0 RX0

wm0 RX1
wm0 RX2

wm0 RX3
wm2 RX0

wm2 RX1
wm2 RX2

wm2 RX3

6.2 Experimental results
We use the throughput test defined in RFC 2544 [8] to
measure our implementation with different CPU affini-
ties and frame sizes.

Table 3 and Table 4 show the results of our measure-
ments in kilo frames per second (kfps) and Mbps respec-
tively. Figure 4 to Figure 7 show the results in various
ways: frame size versus kfps, the number of cores versus
kfps, frame size versus Mbps and the number of cores
versus Mbps.

The GENERIC kernel uses only one interrupt for one
Ethernet port, so it cannot use more than 2 cores. In
contrast, NET MPSAFE kernel can use multiple inter-
rupts using MSI-X. Additionally, NET MPSAFE ker-
nel can run in parallel because intrctl(8) can set affin-
ity those MSI-X vectors to different CPUs. Furthermore,
our MP-safe bridge implementation is scalable. In this
measurement, the interrupt affinity setting lets mbuf not
move between CPU cores, this setting also helps MP-safe
bridge to scale up.

All of the throughputs of the GENERIC kernel do
not reach to the wire rate. Even at 1518 byte frame
size, the performance is 66.6% of the wire rate. In con-
trast, all of the throughputs of the NET MPSAFE kernel

4GENERIC kernel can use 1 core only. 2 core, 4 core and 8 core
data is copy of 1 core one.

Table 3: Kilo frames per second
frame size GENERIC NET MPSAFE

1 core 2 cores 4 cores 8 cores
74 99.3 329.0 527.7 705.4 1,147.1

128 81.3 327.7 528.2 704.8 1,157.6
192 118.9 333.5 530.4 706.6 1,142.9
256 89.1 331.0 530.8 700.3 905.7
384 115.1 332.1 528.5 618.8 613.9
512 109.3 329.0 469.0 469.9 469.9
768 110.3 316.9 317.2 317.2 317.2

1024 119.9 239.4 239.4 239.4 239.4
1280 104.7 192.3 192.3 192.3 192.3
1408 104.7 175.0 175.0 175.0 175.0
1518 108.2 162.5 162.5 162.5 162.5

��

����

����

����

����

�����

�����

�� ���� ���� ���� ���� ����� ����� ����� �����
�	
�����	��������
�	
�����	��������
�	
�����	��������

�	
�����	��������
�	�	���

Figure 4: Frame size vs. kilo frames per second

reach the wire rate at 768 byte frame size. Hence the
NET MPSAFE lines in Figure 4 are overlapped at 768
byte or lager. As the same reason, 768 byte lines in Fig-
ure 5 is flat. Furthermore, 2 core or higher performance
reaches the wire rate at 512 byte, 4core or higher does at
384 byte, and 8 core does at 256 byte. Each graphs in
Figure 4 are overlap at frame size that the performance
reaches the wire rate, moreover each graph in Figure 5 is
flat. Figure 6 and Figure 7 more clearly show that all of
throughputs of the NET MPSAFE kernel reach the wire
rate.

At frame size 74 byte, the throughput of the GENERIC
kernel is only 3.74% of the wire rate. The throughput
of NET MPSAFE kernel at 1 core is 12.4% of the wire
rate. Likewise, the throughput on 2 core is 19.8%, 4 core
is 26.5%, and 8 core is 43.1%. These results show that
our implementation scales up well, however, it does not
reach the wire rate on the experimental machine.

Table 3 shows the throughput of NET MPSAFE ker-
nel (1 core) is 3.2 times higher than the throughput of
GENERIC kernel in 74 byte frame size. This is due to

��

����

����

����

����

�����

�����

�� �� �� �� �� ���

�	
�����	���������
�	
�����	���������
�	
�����	���������
�	
�����	���������
�	
�����	���������

�	�	������������
�	�	������������
�	�	������������
�	�	������������
�	�	������������

Figure 5: # of cores vs. kilo frames per second 4

Table 4: Mbps per second
frame size GENERIC NET MPSAFE

1 core 2 core 4 core 8 core
74 58.81 194.81 312.43 417.60 679.14

128 83.34 335.64 540.88 721.79 1185.47
192 182.72 512.26 814.74 1085.37 1755.60
256 182.63 677.90 1087.13 1434.42 1855.06
384 353.83 1020.48 1623.63 1900.97 1885.95
512 447.93 1347.93 1921.42 1924.79 1924.80
768 678.03 1947.51 1949.22 1949.22 1949.22

1024 982.34 1961.67 1961.67 1961.67 1961.67
1280 1072.66 1969.22 1969.22 1969.21 1969.22
1408 1179.89 1971.97 1971.98 1971.97 1971.97
1518 1314.65 1973.98 1973.98 1973.97 1973.98

not using MSI-X itself but the difference between the
implementations of the MSI-X handler and the INTx
handler. The MSI-X handler processes one incoming
frame on a single interrupt. In contrast, if wm INTx han-
dler processes all available incoming frames on a sin-
gle interrupt by loop until TX queue is empty, there-
fore the period of hardware interrupt context can be
long. For bridge, this too long hardware context dis-
turbs bridge forward softint. Furthermore, the loop
processes cause if snd overflow. For these reasons, the
performance degraded. By modifying if wm INTx han-
dler to process one frame on a single interrupt, the INTx
performance is improved to 256 kfps. Because the cur-
rent implementation has separate MSI-X vector handlers
for TX and RX, NET MPSAFE is more improved up to
about 330 kfps.

��

����

�����

�����

�����

�� ���� ���� ���� ���� ����� ����� ����� �����
	
������
��������
	
������
��������
	
������
��������

	
������
��������
�
	
���

Figure 6: frame size vs. Mbps

7 Conclusion

We have modified several components of NetBSD and
developed new components to achieve parallel network
processing as described in this paper. Some of them are
already in the NetBSD-current tree, but others are not
yet. For example, modifications of bridge are already
in the tree while MSI/MSI-X and multi-queue supports
are not (as of this writing).

Our work has not finished yet and there remain a lot of
tasks to do, especially tasks of making Layer 3 and above
in the network stack MP-safe are important towards our
goal. The tasks will take more efforts than so far and will
need helps by other developers.

We also have several plans other than the above re-
maining work to do in the future for the goal. We will im-
plement interrupt distribution facilities for architectures
other than x86. As our project use ARM and MIPS, we
will undertake those architectures.

References

[1] Intel 64 and IA-32 Architectures Software
Developer Manuals, http://www.intel.

com/content/www/us/en/processors/

architectures-software-developer-manuals.

html.

[2] Greg Lehey, Improving the FreeBSD SMP Imple-
mentation, USENIX Annual Technical Conference,
FREENIX Track, 2001.

[3] Jim Mauro and Richard McDougall, Solaris Inter-
nals: Core Kernel Components Vol.1, Prentice Hall
Professional, 2001.

��

����

�����

�����

�����

�� �� �� �� �� ���

	
������
���������
	
������
���������
	
������
���������
	
������
���������
	
������
���������

�
	
������������
�
	
������������
�
	
������������
�
	
������������
�
	
������������

Figure 7: # of cores vs. Mbps 4

[4] Paul E. McKenney, RCU vs. Locking Performance
on Different CPUs, linux.conf.au 2004, 2004.

[5] Paul E. McKenney and Jonathan Walpole, Introduc-
ing Technology Into the Linux Kernel: A Case Study,
ACM SIGOPS Operating Systems Review 42.5, 4–
17, 2008.

[6] Jeffrey C. Mogul and Kadangode K. Ramakrishnan,
Eliminating Receive Livelock in an Interrupt-Driven
Kernel, ACM Transactions on Computer Systems
15.3: 217–252, 1997.

[7] PCI-SIG, https://www.pcisig.com/.

[8] RFC 2544, https://tools.ietf.org/rfc/

rfc2544.txt, 1999.

Appendix A MSI/MSI-X APIs

/* for MSI */

int

pci_msi_count(struct pci_attach_args *pa);

int

pci_msi_alloc(struct pci_attach_args *pa, pci_intr_handle_t **ihps, int *count);

int

pci_msi_alloc_exact(struct pci_attach_args *pa, pci_intr_handle_t **ihps, int count);

void

pci_msi_release(pci_intr_handle_t **pihs, int count);

void *

pci_msi_establish(pci_chipset_tag_t pc, pci_intr_handle_t ih, int level, int (*func)(void *), void *arg);

void *

pci_msi_establish_xname(pci_chipset_tag_t pc, pci_intr_handle_t ih,

int level, int (*func)(void *), void *arg, const char *xname);

void

pci_msi_disestablish(pci_chipset_tag_t pc, void *cookie);

/* for MSI-X */

struct msix_entry {

pci_intr_handle_t me_handle; // set by internal implementation of API

u_int me_index; // MSI-X table index which API user want to bind "me_handle"

};

int

pci_msix_count(struct pci_attach_args *pa);

int

pci_msix_alloc(struct pci_attach_args *pa, struct msix_entry *entries, int *count);

int

pci_msix_alloc_exact(struct pci_attach_args *pa, struct msix_entry *entries, int count);

void

pci_msix_release(pci_intr_handle_t **pihs, int count);

void *

pci_msix_establish(pci_chipset_tag_t pc, pci_intr_handle_t ih,

int level, int (*func)(void *), void *arg, const char *xname);

void *

pci_msix_establish_xname(pci_chipset_tag_t pc, pci_intr_handle_t ih,

int level, int (*func)(void *), void *arg, const char *xname);

void

pci_msix_disestablish(pci_chipset_tag_t pc, void *cookie);

