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® What
O Motivation:
* Since inception of pmda-denki, new research projects keep appearing.
* | looked at my Star64 (RISC-V board), a Thinkpad T590, Apple MacBook
M2, Raspi4, SteamDeck. The Raspi4 is slower than the MacBook, but
also uses less power.. is it more efficient?
O How compare these systems regarding performance and efficiency?

® Why?
* There is a climate crisis going on. We are directly impacted. Our children
are asking us what we are doing about it.



The Test Setup
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* Control System: Linux, Ansible
* SUT: Thinkpad, Raspi4 etc.



Stack:
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What makes a good test workload?

® Network, Memory size, Memory throughput, storage 1/O:
* Not the bottleneck in most cases
¢ Consumes not much power
* Can often easily be replaced, i.e. NIC’s

® CPU
* major bottleneck
* main power consumer
=> Let’s look at that.



Selecting the best CPU workload

Workload Short Includes various Easy setup?
runtime? workloads?

SPEC suite e +++ e

OpenSSL's - - ++

("openssl speed”)

make world - + -

bzcat uncompression ++ - ++

("bzcat <file.bz2>")




Job Loops

while :; do
B bzcat(file)
extract() threadl >——» counterl++ ;
"\ done
while :; do

y bzcat(file
job_httpd_extract_cpu.sh }—extract() “ thread2 counte(r2+)+ ——p sleep 10 minutes —p{ kill all 3 threads g sum = counter(1+2+3)
done .
/ i, while :; do
. bzcat(file)
extract() thread3 — counter3++
> done

/
/

@® Let’'s start multiple loops, each constantly extracting data
@® After 10 minutes count the completed extract operations
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® Which job runtime do we need to get reliable results?

=> 60sec looks good as per this graph, so | used 300sec to be sure.




Our contenders:

® Thinkpad L480: x86_64, model released 2018, an 8th gen Intel i5-8250U CPU (14nm),
configured for 4 cores without hyperthreading. For this system, all three sources to
measure power consumption are usable.

® Macbook Pro Asahi Fedora remix: 10 core AppleSilicon M2 CPU (5nm), which is an
aarch64 design. Model from 2023. Due to the high number of cores, up to 10 threads
can be run on separate cores.

® Steam Deck: AMD CPU with 4 cores/8 threads (7nm), released 2022
® Raspberry Pi 4: 4 core (16nm) aarch64 system from 2019
@® Star 64: RISC-V board with 4 cores, introduced 2023

® Sun Ultra5: sparc64, 1 core UltraSPARC Ili (270Mhz, 0.35 um (350nm)), released 1998,
running Linu”~WNetBSD
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Results: performance
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Results: total power draw

Volt-ampere (VA)

60

50

40

Total power draw

Thinkpad L480 (AMD64) sefem
Macbook/Fedora (aarch64) s
Steamdeck (AMD64)
Raspberry Pi 4 (ARM)

Starée4 (RISC-V)

30
e
20
10
0 '{ 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14
Threads




12

WattHours

Results: Efficiency
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Results: Efficiency + UltraSPARC

Energy consumption per single extract job (logarithmic)
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Results: Efficiency + UltraSPARC

Energy consumption per single extract job
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Links

® This topic as article:
Is a slow but low-consumption system more energy efficient?

® The pmda-denki handbook links to various investigations around pmda-denki

The code: https://github.com/christianhorn/smallhelpers
More on pmda-denki on the blog


https://www.redhat.com/en/blog/slow-low-consumption-system-more-energy-efficient-lets-measure-rhel
https://www.redhat.com/en/blog/slow-low-consumption-system-more-energy-efficient-lets-measure-rhel
https://github.com/christianhorn/smallhelpers
https://blog.fluxcoil.net/
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