Performance and consumption of
cpu-bound workloads over various
architectures

Christian Horn

IRCnet: globalc@#NetBSD
https://fluxcoil.net

Mastodon: https://chaos.social/@globalc

https://fluxcoil.net/
https://chaos.social/@globalc

® What
O Motivation:
* Since inception of pmda-denki, new research projects keep appearing.
* | looked at my Star64 (RISC-V board), a Thinkpad T590, Apple MacBook
M2, Raspi4, SteamDeck. The Raspi4 is slower than the MacBook, but
also uses less power.. is it more efficient?
O How compare these systems regarding performance and efficiency?

® Why?
* There is a climate crisis going on. We are directly impacted. Our children
are asking us what we are doing about it.

The Test Setup

Control System System Under Test (SUT)

CPU/RAPL
Linux Linux
pmcd Battery pmcd/pmda-denki
pmlogger Power supply || workloads
NIC |

smart plug

* Control System: Linux, Ansible
* SUT: Thinkpad, Raspi4 etc.

Stack:
* Ansible

* Python

* Performance
Co-Pilot (PCP) w/
pmda-denki

* Bash

pmda-denki history

Compare software

efficiency for a given task

Introduction article

2021
Compare performance + e
efficiency of emulated and
virtualized guests 2022

Compare efficiency of

2023
emulated systems 2025

) i 2024
Presentation: pmda-denki

introduction

Measure hardware
component power
consumption

Compare
battery/RAPL/smartplug
metrics

pmda-denki install and
simple usage

Compare efficiency of
various physical systems

Swayplugin showing power
consumption

What makes a good test workload?

® Network, Memory size, Memory throughput, storage 1/O:
* Not the bottleneck in most cases
¢ Consumes not much power
* Can often easily be replaced, i.e. NIC’s

® CPU
* major bottleneck
* main power consumer
=> Let’s look at that.

Selecting the best CPU workload

Workload Short Includes various Easy setup?
runtime? workloads?

SPEC suite e +++ e

OpenSSL's - - ++

("openssl speed”)

make world - + -

bzcat uncompression ++ - ++

("bzcat <file.bz2>")

Job Loops

while :; do
B bzcat(file)
extract() threadl >——» counterl++ ;
"\ done
while :; do

y bzcat(file
job_httpd_extract_cpu.sh }—extract() “ thread2 counte(r2+)+ ——p sleep 10 minutes —p{ kill all 3 threads g sum = counter(1+2+3)
done .
/ i, while :; do
. bzcat(file)
extract() thread3 — counter3++
> done

/
/

@® Let’'s start multiple loops, each constantly extracting data
@® After 10 minutes count the completed extract operations

Power in W

25

20

15 |

10 |

Find optimal job runtime

Job length comparison

o
o
o o o § E
° ° o 3 g g a 3 g g
o o o o) g
8 ° 5
o o o
o ©
° y 9) ¥ N N N X X X M X
N X
X X
metrics reported by RAPL x
. . . . metrics reported by battery o
0 10 20 30 40 50 60

Seconds per job run

® Which job runtime do we need to get reliable results?

=> 60sec looks good as per this graph, so | used 300sec to be sure.

Our contenders:

® Thinkpad L480: x86_64, model released 2018, an 8th gen Intel i5-8250U CPU (14nm),
configured for 4 cores without hyperthreading. For this system, all three sources to
measure power consumption are usable.

® Macbook Pro Asahi Fedora remix: 10 core AppleSilicon M2 CPU (5nm), which is an
aarch64 design. Model from 2023. Due to the high number of cores, up to 10 threads
can be run on separate cores.

® Steam Deck: AMD CPU with 4 cores/8 threads (7nm), released 2022
® Raspberry Pi 4: 4 core (16nm) aarch64 system from 2019
@® Star 64: RISC-V board with 4 cores, introduced 2023

® Sun Ultra5: sparc64, 1 core UltraSPARC Ili (270Mhz, 0.35 um (350nm)), released 1998,
running Linu”~WNetBSD

jobs/second

10

14

12

10

[+-]

N

o

B~ O

Results: performance

Total extraction jobs per second

Thinkpad L480 (AMD64) ==

Macbook/Fedora (aarch64) =—se—— o -
Steamdeck (AMD64)
Raspberry Pi 4 (ARM)
Star64 (RISC-V)
0 2 4 6 8 10 12 14

Threads

11

Results: total power draw

Volt-ampere (VA)

60

50

40

Total power draw

Thinkpad L480 (AMD64) sefem
Macbook/Fedora (aarch64) s
Steamdeck (AMD64)
Raspberry Pi 4 (ARM)

Starée4 (RISC-V)

30
e
20
10
0 '{ 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14
Threads

12

WattHours

Results: Efficiency

0.007

0.006

0.005

0.004

0.003

0.002

0.001

Energy consumption per single extract job

Thinkpad L480 (AMD64) s

Macbook/Fedora (aarch64) s

Steamdeck (AMD64)
Raspberry Pi 4 (ARM)
Star64 (RISC-V)

8
Threads

10

12 14

Results: Efficiency + UltraSPARC

Energy consumption per single extract job (logarithmic)

1
' ' . ' 10 Ultra5 (1998) g
Thinkpad T41, Pentium
AMD Phenom Il X6 1055T, 6 core (2010)
Thinkpad x200, core2duo cpu (2008)
Thinkpad L480 (2018)
0.25 - Raspberry Pi 4 (2019) ==g==
Steamdeck (2022) s
Macbook/Fedora (2023) st
)
1]
(%]
v 0.0625 |
.E Drgumensts - = . — —— a—— m—
<
k=
-
)
[5)
= 0.015625 |-
4
3
)
T
b
]
s
0.00390625 |-
%ﬁli—ﬁﬁl—* — S —
— S — = "]
0.000976562 | /
1 1 1 1 1 1 1
0 2 4 6 8 10 12 14

Threads

Results: Efficiency + UltraSPARC

Energy consumption per single extract job
0.9 T T T T T T T

08

0.7

0.6

Sun Ultra5 (Sparc64) =g

Thinkpad T41, Pentium M cpu (X86) il

05 |k AMD Phenom Il X6 1055T (AMD64) _
Thinkpad x200, core2duo cpu (AMD64)
Thinkpad L4380 (AMD64)

Raspberry Pi 4 (ARM) ==gumm

04 Steamdeck (AMD64) mge]

Macbook/Fedora (aarch64) e

Star64 (RISC-V) s

WattHours

0.3 -
0.2 -
0.1 -
[———— - o= — -
(| E— = L
0 2 4 6 8 10 12 14
Threads

14

15

Links

® This topic as article:
Is a slow but low-consumption system more energy efficient?

® The pmda-denki handbook links to various investigations around pmda-denki

The code: https://github.com/christianhorn/smallhelpers
More on pmda-denki on the blog

https://www.redhat.com/en/blog/slow-low-consumption-system-more-energy-efficient-lets-measure-rhel
https://www.redhat.com/en/blog/slow-low-consumption-system-more-energy-efficient-lets-measure-rhel
https://github.com/christianhorn/smallhelpers
https://blog.fluxcoil.net/

Thanks!
HOHNESTETVWET

Danke!
e O et Cnacunbo

https://fluxcoil.net
Mastodon: https://chaos.social/@globalc

https://fluxcoil.net/
https://chaos.social/@globalc

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

